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Abstract

Convective transport phenomena are usually analyzed starting from the mass, momentum and thermal energy differential conservation
equations. These equations express balances involving different transport phenomena contributions (convection, diffusion and source). Whel
worked with any available solutions’ method, they are usually interpreted in this form. However, in a scale sense, they can be interpreted
as relationships between time scales associated with each individual transport phenomenon. Once the individual time scales for convection
diffusion and source are defined, the common differential equations can be interpreted as algebraic relations between time scales. Thit
time scale-based approach seems to be a very effective tool for problem analysis when applied to laminar boundary layer flows and to the
Bénard convection problem. It leads to a unified, consistent and physically coherent interpretation of the governing dimensionless parameters
obtained, as well as to a unified treatment of situations usually taken as unequal. This unified treatment also leads to a unified setting of
transition to turbulence criteria even for very different physical situations.
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1. Introduction layer thickness. Once the latter is known, the heat and mo-
mentum transfer parameters can be obtained easily, but this
Fundamental analytical studies of laminar convective is beyond the scope of this work. The same boundary layer
phenomena can be made using available tools such as scalfesults can also be obtained by using the scale analysis in
analysis, similarity analysis or integral analysis. Amoung the classical form, i.e., applied over the original differential
these, the scale analysis is one of the most attractive ©0gquations as expressing conservation principles. However,
study boundary layer flows, as it is mainly the present case, yq time scale analysis has its own physical insight, leading
svzﬁkt%;tng}gﬁr?;]t S{Lrgpllncgt);]sg?spQZZﬁi:vlglilguhst.etljnV\t/irlﬁ to a unified and physically coherent time basis for problem
very good results.’There, the mass conservation equationanalySiS and definitiqn ofthe Qimensi_onless gover_ning para_l—
Meters, always obtained as time ratios. Interpreting the di-

is interpreted as a mass balance, the momentum equation ; o )
are interpreted as an inertial-viscous (and buoyancy, if it is Mensionless parameters in this way, their (usual and uncon-

the case) force balance and the thermal energy equation igroversial) physical meaning can be judged, as well as their
interpreted as a convection—diffusion energy balance. Thenhumerical values. The time scale-based approach here pro-
differential equations can be interpreted in this way, but they posed also leads to an effective criterion to decide whether
can also be interpreted as relationships between the differenthe external mixed convection is dominated either by forced
time scales present, associated with each particular transporbr by natural convection, which differs from some of the
phenomena involved. well-established criteria. A unified setting of the transition
This time scale-based treatmentis a powerful tool that can to turbulence criteria for different physical situations is also
be applied to convective boundary layer flows, the results ob- gptained through this time scale-based approach. The onset
tained being expressed as momentum and thermal boundaryt the convection in the Bénard convection problem is an-
other situation that is analyzed applying this time scale based
E-mail addressy_costa@mec.ua.pt (V.A.F. Costa). approach.
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Nomenclature

Bo Boussinesq number

D channelwidth.....................
D diffusion coefficient..................
g gravitational acceleration..........
Gr Grashof number

H height.............. ... o it
L length.......... ... ... ...
m MASS . ottt it ii e
n temperature difference factor

P pressure ...
Pe Péclet number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

S source term

t time ..o
T temperature..................L
u,v Cartesian velocity components.. ...
U,V velocity ...t
X,y Cartesian co-ordinates ............
Greek symbols

o thermal diffusivity ...................

B volumetric expansion coefficient......... K
A difference value; distance

8 boundary layer thickness.................. m
v kinematic viscosity . ................. o
0 density. ..o kg3
T time scale

¢ generic intensive (specific) property

@ generic extensive property related#o
Subscripts

b buoyancy

c convection

d diffusion

FC forced convection

max maximum value
min minimum value

NC natural convection

u,v referring to velocity or momentum
0 at the wall

0 at the centerline, in internal flow
¢ related with thep property

(%) at the free-stream

2. Timescales

A particular transport phenomenon is characterized by its
own time scale, obtained considering the simplest transient

form of the differential equation involving the particular

transport phenomenon under analysis.

In the search of a convective time scale, one writes

09 06 _

u 0
dat 0x

where¢ is a generic specific variable. In a scale sense, if
At. ~ (to)r,u ~ V., andAx ~ L, whereV, is the velocity
in thex direction, Eq. (1) leads td¢/(t.) ~ V. A¢/L, the

convective time scalér,.);, being obtained as

() L
) ~ —
cJL Vc

1)

(2)

The physical meaning of Eq. (2) is well-knowte,),

is the time needed for (any variable) to travel through the

distanceL with the velocity V.. This convective time scale
is the same for any particular variabpeunder analysis, as

the fluid velocityV, is unique.

The time scale for diffusion is obtained starting from

% _p, 3%

ar P ox?

3)

where Dy, is the¢ diffusion coefficient. In a scale sense, if
Aty ~ (t4,4) andAx ~ L, the diffusive time scaléry )1
for the ¢ variable can be obtained as
2
~ 4
(td.¢)L D, (4)

The physical meaning of Eq. (4) is the followingrs ¢) 1

is the time needed for the¢ variable totravel diffusively
through the distancd., when the diffusion coefficient is
Dy. Each particulag is associated with its own diffusion
coefficient Dy, thus leading to a particular diffusive time
scale for each particular meaningg®f Comparing Egs. (2)
and (4), thediffusion velocityV; 4 for the variable¢,
through the lengthL, can be found as scaling a4 4 ~

Dy /L, where it should be stressed that this diffusive velocity
is length dependent.

The problems involving natural convection include a
buoyancy source term in the vertical velocity momentum
equation, corresponding a given time scale to the buoyancy
phenomenon. This time scale is obtained from the simplest
form of the vertical momentum equation,

U — gBAT 5
oy =8P ()
using the Boussinesq hypothesis. In a scale sengag,, it
7, and Av ~ Vp, the thermal buoyancy time scatg is
obtained as

Vi
gBAT

22

(6)
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The physical meaning of this time scale is the following: Uer Poo

7, is the time needed for the (modified gravitational) -

acceleratiorg8AT to act in such way as to induce a vertical —

velocity changeAv ~ V. —

Once the three important time scales for this study are

defined, the differential equations can be transformed and |l L »l
interpreted as establishing algebraic relationships between ! !

time scales. Fig. 1. Velocity boundary layer adjacent to a flat plate in forced flow.

and by ther andy momentum equations, joined together in

3. Relationshipsbetween time scales the momentum boundary layer equation [1]
2
The usual two-dimensional steady mass, momentum andua_” + Ua_” = _Ed& + ,,a_bz‘ (10)
heat transfer phenomena are described by partial differential 9% dy p dx dy
equations, that can be written in the general conservativelf thermal effects are present, the thermal energy boundary
form [2] layer equation reads [1]
d d aT  aT  3°T
—(pug) + —(pve) U—+v—=a— (11)
ox oy ox ay ay
e e’
convectionx  convectiony
5 3¢ P 3¢ 4.2. Velocity boundary layer in external flow
=0 ,OD¢$ +3_ ,0D¢a— + S¢ )
Y Y source Starting the analysis with Eqg. (9), including only convec-
diffusion x diffusion,y tive terms, the application of Eq. (8) leads to
. e . . 1 1
The generic specific variabigcan stand for the unit (global  (77%) ~ (z; )y (12)

mass conservation equation)or v, temperaturd or other. i ) ) )

Eq. (7) results form a differential control-volume balance that is, for two-dimensional flows the and y convective
involving the three transport phenomena contributions re- Flme scales are of the same order. This resullt will be present
lated with the (extensivep = m¢ variable, by unit of vol- in all the bogndary I.ay.er flows analyzed in the present
ume and unit of time, that is, it is a balance involving terms Work. From Fig. 1, within the momentum boundary layer
of the type Ad /(volumex time). Assuming that the vari- ¥ ~ L,y ~ 8, andu ~ Ueo. EQ. (12) leads t@oo/L ~ v/8,
ation A® and the volume under analysis are the same for thatis,
all terms, assumptions usual when using scale analysis [1],a
balance involving terms of the type/time) are obtained. If v ZUO" (13)
the differenttimes (a;soc_iated with the terms of different na- Assuming that &, /dx = 0 in Eq. (10), a usual simplify-
ture) needed to obtain thEmmechangeA® over the same  ing assumption when using scale analysis [1], in a time scale
volume are retained, Eq. (7) can be rewritten as establishinggense one obtains
the following relationship between the time scales: ) 1 )

(ze ) (7 )y ~ (Ta), (14)

-1 -1 -1 -1 -1
T (T ~ (T (T T (8)
(7 (), ~ (9) v (7a) s Tources Asx ~L,y~8,u~ Us andv ~ 8Us/L, Eq. (14) leads
where(a, b) means the greater value @fandb, in a scale to (Uso/L)(1, 1) ~ v/82, further algebra leading to
sense. The first conclusion obtained from Eq. (8) is that fast

1/2
phenomena are dominant, with associated short time scales— ~ <ﬁ> — Rezl/z (15)
o
where thel-based Reynolds number appears
4. Forced convection UsoL
Re = (16)

Y
Usually, with dP/dx = 0, Eq. (10) is interpreted as
(inertia forces)~ (viscous forces) [3], leading to

4.1. Differential equations for the boundary layer

The boundary layer adjacent to theoriented flat plate _ . .
represented in Fig. 1 is governed by the mass conservatior(inertia forceg/ (viscous forcep~ 1.

equation If the Reynolds number is interpreted as the inertial-viscous
Ju o forces ratio, it should be alwayRe, ~ 1. However, it is
o + @ =0 C) well known that the Reynolds number can reach values as
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high as 5x 10 in external laminar boundary layer flows, At the centerline
a figure clearly different from 1. Bejan [1] points out such
incgnsistency)?n this Reynolds nur:]ber[ iln'?erpretation, and V=0 u=uo= (D?/8v)[(1/p)(~dP/d)].
proposes that the message of the Reynolds number is notrhe pest scale fotsource, is obtained from the exact result
given by the number itself but by its square root, given that for ;, as
Rei/2 ~ L/§ = slenderness ratio of the boundary layer. 9
In the present work, the physical meaning of the Reynolds Tsourcex ~ D*/8v (21)
number is given as &me ratio. Evaluating the following

! ) g From the usual interpretation of the Reynolds number,
time ratio, asL is the known length,

as scaling with the ratio (inertia forces)/(viscous forces),
(Ta.u)L L?/v the Reynolds number for fully developed flow between
()L ~ L/Uso =R& (17) parallel plates should always be zero: there are no inertial
i , i forces in thex momentum equation (19). It is interesting
i o B o s i o e 198 13 1 Reyrlds bk delned usng
. H _ 2

diffusion through distancel. and the time needed for the average velocity/ = (D*/12u)(~dP/dx), can reach
convection through thisamedistanceL, when the velocity

is u ~ Us. In most common situations, the distantds
such that leads to high values of the Reynolds number.
However, thereal diffusive process occurs through the
8(8 « L) thickness only.

Taking the ratio

values as high as 2300 in laminar regime. This usual
interpretation erroneously suggests that the inertial effects
are more important than the viscous ones in a Hagen-
Poiseuille flow, which has no inertial effects.

The centerline velocity of an Hagen—Poiseuille flow is
evaluated from Eq. (20) ag = (3/2)U, and one can think
of two boundary layers adjacent to the upper and lower solid

(Td.u)s 82/v walls, the (analogous of the) free stream velocity being
o ~ (18)  Following th dure as for Eq. (17
(t)r LU ollowing the same procedure as for Eq. (17),
one obtains the following time scale-based interpretation for (z;,)p D?/v UD Re» (22)

the velocity boundary layer thicknes&.L) is the distance, (top D/(3U/2) T
measured away from the solid wall, in such a way as to

make the time needed for the momentum diffusion through 'S the Reynolds number, defined as a time ratio.
distances(L) of the same order of the time needed for Very interesting is the analysis of the transition Reynolds

convection from 0 td. with velocity Us.. number for these apparently very different situations, which
is typically 5x 10° for an external boundary layer flow
4.3. Velocity boundary layer in internal forced flow and 2300 for an internal channel flow. Searching for the

length scale L, associated with the uniformly accelerated
The problem of internal forced flow differs from the Motion under the acceleratiofi/p)(—dP/dx), we have
external one essentially due to the presence of an upper: ~ (1/2)[(1/p)(—dP/dx)|tdource,- Recalling Egs. (20)
horizontal wall, which precludes the flow assuming the free and (21) one seté, ~ ug(D?/16v). Evaluating the ratio
stream velocity. At the middle of the channel, and at a given Similar to the one presentin Eq. (17) we have
length from the entry, the upper and lower boundary layers

\ : . \ . uol  (3UD\?> (3 2
set linked, with a unique velocity value at the centerline. For Rg = — ~ <__) = <—Reo> (23)
a fully developed flow, the momentum equation comes [1] v 8 v 8
dPu  1dP The transition D, U) based Reynolds numb&e, is
vd—yz T (19) typically 2300, the square value present in Eq. (23) (of the

order of 7x 10°) being, in a scale sense, the transition
In a time scale sense, Eqg. (19) informs us ht’@i)y ~ (L, ug) based Reynolds number for the same situation, taken
Ts?)ﬁrceu- In this casey ~ D/2, whereD is the channel ~ as an external boundary layer situation, wheteis the
width, and zsources ~ u0/[(1/p)(—dP/dx)], which is the counterpart of the free stream velocity. This aspect has
time needed for thel/p)(—dP/dx) acceleration to act in  been also pointed out by Burmeister [4], from the Reynolds
order to induce the velocity change: ~ ug [the centerline ~ number based on the momentum thickness.
velocity uo = u(y = 0)]. From (;1)y ~ Tgotrce, the uo
velocity scale isig ~ (D?/4v)[(1/p)(—dP/dx)]. 4.4. Thermal boundary layer in external flow
The exact solution of Eq. (19) can be obtained leading

to the Hagen—Poiseuille solution for fully developed flow  The analysis starts considering the time scale ratio for
between parallel plates heat and momentum diffusion through tbeamedistanceL,

u(y)zD—2<—Ed—P)[1—( Y )2} (20) MNLZ/O‘_g

8v\ pdx D/2 (ta)  L?/v

Pr (24)
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The Prandtl number—a fluid property—can be inter- Ue, T, P
preted as the ratio between momentum and heat diffusive —
time scales associated with a common length. —
The thermal energy conservation Equation (11) results in
-1 -1 -1
(TC )x’ (TC )y ~ (Td,T)y (25)
As, in the thermal boundary layer,~ L andy ~ ér, one _L
obtains -
u v o
Lo % (20
roor e L »l
Taking the time ratio, similar to that of Eq. (18), assuming ! !
u/L as the dominant term in the left side of Eq. (26) (b)
(ta.7)sy 3%/05 Fig. 2. Velocity and thermal boundary layers adjacent to a flat plate in forced
( . ) ~ L/ ~ (27) flow: (a) Thick thermal boundary layer; (b) Thin thermal boundary layer.
Tc)L u

one obtains the following time scale-based interpretation for the thermal boundary layer is, from geometrical consider-

the thermal boundary layer thickness«(L) is the distance, ~ alons,u ~ (87/8)Us. Within the thermal boundary layer,

measured away from the solid wall, in such a way as to make* ~ L» ¥ ~ ér andu ~ (87/8)Ux, Eq. (12) leading to

the time needed for heat diffusion through distadgeL) v~ (87/L)(81/8)Uss. Application of the foregc;mg scales

of the same order of the time needed for convection from 0 IN Ed- (26) leads to[(‘ST/‘S)UOi/g)L](l’ D ~ a/87, which

to L, with the prevailing velocity:. gives 87/L ~ [(8/L)(et/UsoL)] /3, The 8/L ratio is ob-
Thick thermal boundary laye¢s7 > §). In this case as  tained from Eq. (15), and one obtains that

depicted in Fig. 2(a), the velocity at the exterior edge of 8_7 ~ pe-Y2py1/6 (31)

the thermal boundary layer i8 ~ Us. The v velocity L L

scale is obtained from Eq. (13), and Eq. (26) becomes From Egs. (15) and (31) one obtains th&t/s ~

(Uso/L)(L,8/87) ~ /8%, leading to Pr-1/3 « 1, that is,87 <« & for a fluid with Pr > 1. The

5 12 analogous of Eq. (30) gives,.7)s, /(ta.7)s ~ Pri/3. If the

o < o ) — (Re.Pr)Y2_ Pezl/z (28) diffusion times are of the order d®rl/3® and §; < §, it

L UsoL should bex « v, thatis,Pr > 1. The left side of Eq. (26) be-

Parameter comes(87/8)(Uso/L), (67/L)(7/8)(Uso/87), boOth terms
Uso L are of the same order, and it is correct to takd as the

Pe, = (29) dominant term in the left side of Eq. (26) to obtain Eq. (27)

* even forPr > 1.

is the Péclet number, similar to the Reynolds number of
Eq. (16), and has the following time scale physical meaning: )
it is the ratio between the time needed for the heat diffusion 5. External natural convection
through distancd. and the time needed for the convection _ _ )
through this same distande, with the velocityu ~ Use. In this case, the pressure-gradient term is balanced by the
Thus, the Péclet number is for the forced external convective Nydrostatic pressure term, and the momentum equation in
heat transfer (for ®r < 1 fluid, as it will be seen further) the boundary layer adjacent to the vertical flat plate of Fig. 3
what the Reynolds number is for the external convective P&comes [1]
momentum transfer. v v 2% 32

From Egs. (15) and (28) one obtains th&/s ~ uot Yoy T Vox? +8fAT (32)
Pr-1/2 3 1, that is,s7 > & for a fluid with Pr « 1. Tak-

. f - In what follows, AT = (Tmax— Tmin). The thermal ener
ing the time ratio (Tmax — Tmin) ay

conservation equation for this case becomes

Cardsr 37/ 4 30 0T, T _ 9T
(taw)s  8%/v dx dy dx2
one concludes that the diffusive times are similar. If the
diffusive times are of the same order asyd>> §, it should 5.1. Thermal boundary layer
be o > v, that is,Pr « 1. It should be noted that/s; ~
(Uso/L)(8/67) < Uso/L,and itis correctto take/L as the When the thermal boundary layer represented in Fig. 3 is
dominant term in the left side of Eq. (26) to obtain Eq. (27). under analysisy ~ §7 andy ~ H, and Eq. (33) gives
Thin thermal boundary layetsy <« §). In this case, as u v o
shown in Fig. 2(b), the velocity at the exterior edge of s,° - g

(33)

(34)
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or

Fig. 3. Thermal boundary layer in external natural convection along an
heated vertical wall.

From the time scale version of the mass conservation
equation one obtains thaysy ~ v/H, and Eq. (34) can be
written as

1/2
( ) ~ (Pey.my) Y2

Pew, my being the ¢, H) based Péclet number. From Eq. (34)
one can obtain that, within the thermal boundary layer
H

)

Eq. (32) gives, within the thermal boundary layer:

gBAT
v

o

vH

ot

i (35)

o

v~ —

- (36)

u v
St' H

v
52
5T

(37)

Using theu /87 ~ v/H time scale version of the mass
conservation equation, thevelocity scale within the ther-
mal boundary layer can be obtained as

1/2

v~ %[RaH (Priprt 1)~ (38)

whereRay is the H-based Rayleigh number defined as

ATH?®
Ray = SPATH” (39)
Vo
If Pr> 1, Egs. (38) and (36) give
o 1/2
v~ ﬁRaH (40)
8r —1/4
Z ~R 41
7~ Ray (41)
If Pr« 1, Egs. (38) and (36) give
o 172
v~ EBoh{ (42)
ot —1/4
~ ~Boy / (43)
The H-based Boussinesq numbBny, is defined as
Boy = RayPr (44)
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Ty

A

) zé‘T

(b)

Fig. 4. Temperature and velocity profiles in external natural convection
along an heated vertical wall for: (8 > 1; (b) Pr « 1.

5.2. Velocity boundary layer

If Pr>> 1, one would expect from thig- /8 ~ Pr—1/3 « 1
result, obtained for the forced convection case, that
8 even for external natural convection, as illustrated in
Fig. 4(a). In this case, the unheated flow (thus with no
buoyancy effects) is viscously dragged by the moving heated
layer of thicknesssy. As the major portion of layes
is not affected by buoyancy, the time scale relationship
corresponding to Eq. (37), without the last right-hand side
time scale and witld replacings; becomes

u v
§'H §2
Remembering the velocity scale given by Eq. (40), the

mass conservation equation relationshjdr ~ v/H and
Eq. (41), one sets

vV

(45)

ﬁ ~ RA14p1/2
H Ra, " "Pr

If Pr« 1, the layerst is heated, all the fluid within this
layer moves up under the thermal buoyancy effect, and the
thermal and velocity boundary layers would have the same
thickness, situation illustrated in Fig. 4(b). Within the shear
layer of thickness, adjacent to the wall, the buoyancy and
viscous effects are dominant. The time scale relationship
corresponding to Eq. (37), without the convective time scales
and with§, replacingst becomes

(46)

Vo gBAT

82

(47)
v
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The buoyancy velocity scale is obtained from Eq. (42), In the search of a consistent time scale-based physical
and the appropriaté;/H ratio is obtained from Eq. (44), interpretation of the Rayleigh and Boussinesq numbers, we
leading to consider the natural convection resulting flow with thee

v~ (a/H)(H /87)? vertical velocity scale and we can find
Sy —1/45 1/2 s : i
T~ Bo, " Pr (48) similar time ratios to that of Eq. (17) foraatural convection

] ) Reynolds numbefRey )nc. With the heat diffusing through
When comparing Egs. (46) and (48), the different phys- yhe |ength, a false diffusive length, and being convected

ical meaning ofs andé, should be retained, even if these with the velocityv through this same lengtH, one obtains
equations are formally similar.
(ta.T)H H?/a <5_T>_2

5.3. Dimensionless parameters (T n H/[(o/H)(H /87)2] “\H

(50)

From the foregoing analysis, summarized by the results YSIng the appropriate expression for the ralijg H [Egs.
given by Egs. (41), (43), (46) and (48), one concludes that (41) Or (43)] one obtains

the role played by the Rayleigh numbeay whenPr > 1 (T 1)1 JRag forPr>1
is essentially played by the Boussinesq numiBey when : ~
(T H v/Bog forPr«1

(51)

Pr«1.
The usually ambiguous physical meaning of fiebased |t can be concluded that the square roots of the Rayleigh and
Grashof number, defined as Boussinesq numbers are the relevant parameters for the heat
¢BATHS transfer problem, which were unnecessarily squared. Com-
Gra=>—5— (49) paring with Eq. (17), we can then conclude thaey)ne =

+/Ray for Pr > 1 and that(Rey)nc = +/Boy for Pr « 1.
It should be noted thai/Boy could be taken, more ade-
quately, as a Péclet number, due to its independenceod
its dependence om. One concludes also that the transition
to turbulence criterion remains established by the adequate
Reynolds number, once again defined on a time scale basis,
the transition occurring foRey ~ 10°(Ray, Boy ~ 1019),
even for very different physical situations.

Noting that the true diffusive length for heatdg and
not H, similarly to Eq. (18) we can obtain the time ratio

is analyzed first. The Grashof number is usually used
alone as the natural convection governing parameter for
natural convection heat and fluid flow problems. How-
ever, it is not the most suitable parameter to charac-
terize all the natural convection situations, as given by
Egs. (41), (43), (46) and (48). This parameter is usually ob-
tained from the nondimensionalized momentum only, which
does not consider the correct vertical velocity scale within
the thermal boundary layer, as given by Eq. (36). The
usual interpretation of the Grashof number is (B]y ~
(buoyancyforce)sf(yiscou; forf:e)s However, in terms of (ta.1)sy N 5% Ja 1
forces, Eq. (32) gives (inertial forces) (.VISCOUS for.ces, (t)n H/[(a/H)(H/57)2]
buoyancy forces) and, once the velocity scale given by ) o . .
Eq. (36) and theu/s; ~ v/H mass conservation equa- and give the following time scale-based interpretation to the
tion relationship is introduced, the foregoing relation can thermal boundary layer thickness for the external natural
be rewritten as(viscous forces x (1, Pr-1) ~ (buoyancy convection situationdy (H) is the distance, measured away
forces. For aPr ~ 1 fluid, it should beGry ~ Ray ~ from the solid wall, such that the time needed for the heat
Boy ~ 1, but we have laminar situations with Grashof num- diffusion through the distancg (#) is of the order of the
bers as high as 20which is a measure of as how inadequate time needed for convection from 0 td, with the velocity
the usual physical meaning of this parameter is. Eq. (42) V(H) ~ (Ol/H?(H/(ST)Z- .
can be rewritten as ~ (U/H)GI‘}_[/Z, and Eq. (48) can be The Rayle|gh gnd Bousslnesq numbers themselves could
. _1/4 . be obtained starting by using a false (but easy to calculate)
rewnt.te.n as(dy/H) ~Gry =, that_ 1S, thgre are some char- velocity scale, that is, by considering~ o/ H. ForPr > 1,
acteristics of the natural convection fluid flow problem that Eq. (32) expresses a momentum diffusion-buoyancy source

are prope_rly descrlped by the Grashof number. Bejan [1] balance within the thermal boundary layer, thus we take the
gives an interpretation, not for the paramet®ay, Boy following characteristic time ratio

and Gry but, with the results of Eqgs. (41), (43) and (48)
present, for their 24th power, which gives the slenderness  (¢; )y H?/v

pf the boundary Iayer_ regi_on corresponding to the buoyancy (Tb)ijNa/H ~ (/H)/gBAT ~Ray
induced flow. A possible interpretation of th¢4th power

of Ray andBoy is thus the ratio of the wall height to the For aPr <1 fluid, Eq. (32) is a momentum convection-
thermal boundary layer thickness fBr > 1 andPr < 1, buoyancy source balance within the thermal boundary layer,
respectively. Similarly, the Mth power ofGry is the ra-  and the characteristic time ratio is now
tio of the wall height to the wall shear layer thickness for a (to)H H/(a/H)

Pr « 1 fluid. (To,1)v~eyu  (/H)/gBAT

(52)

(53)

(54)
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The time-based physical meaning of the Rayleigh or the forced convection thermal boundary layer for « 1, the
Boussinesq number, based on the hefgland on the veloc-  criterion (56) leads to

ity scalev ~ «/H, is the following: it is the ratio between <0()

the momentum diffusive or convective time scale and the 3011/2 Forc;ad convection is dominant
buoyancy time needed to obtain a vertical velocity change Pr < 1: Pey | >0 (58)
Av ~ a/H. The use of the known wall heigtH to obtain Natural convection is dominant

the velocity scale ~ «/H leads to easy calculations (only
with known variables) and to an inappropriate (false) veloc-  The ratioGry /Re,, sometimes referred to as the Rich-
ity scale, thus resulting in high values fRey or Boy. The ardson number [3], is the largely used parameter to charac-
truev velocity scale for the thermal boundary layer is the one terize the mixed convection situation for any Prandtl number,
given by Eq_ (36)' and the adequate heat transfer governing\NhiCh is usually obtained from the nondimensionalized mo-
dimensionless parameters are those present in Eq. (51) mentum only, without the true vertical Velocity scales. Such
a parameter can also be obtained as
(to)ulrFc - H/Voo - Gry

. . 59
6. External mixed convection 178 Voo/8BAT  RE, (59)

_ _ _ that is, using thev ~ V velocity scale for both the
~ In this case, the fluid moves up under the combined puoyancy time scale and the convective time scale. It should
influences of the imposed flow with velocity. and the  pe poted that the particular ratoy/?/Pey; of criterion (58)
buoyangy effect, Iee-ldmgl to a combmed forced and natural can be expressed as the square root of the Gtj /Re’;,.
convection problem: a mixed convection problem. From Egs. (57) and (58) one concludes that the ratio

The imposed upward vertical velocity is~ Vo and Gru/Ré€, is not the suitable parameter to characterize the
the upward vertical buoyancy-induced velocity scales as p, > 1 mixed convection situation, and that the square

- 2 ; i . ) .
v~ (e/H)(H/5r)7 as givenby Eq. (36). The scale analysis oot of the ratioGry/Ré is the suitable parameter to
proposed before treats the natural and forced conveletiah characterize ther « 1 situation. If we recall that/Ray or

transfer problemsrespectively, as follows /Boy are the suitable parameters to characterize the natural
} : P convection situations foPr > 1 or Pr « 1, respectively,
NC: (convectio ~ (diffusion . .
( Dwme H ~ ( D, (3r)nc (55) and not theRay or Boy parameters, this square root is not a

FC: (convection )., # ~ (diffusiony, s;)ec strange result

The forced or natural convection dominance for the heat ~ Criterion (56) is convection time scale-based (or velocity
transfer problem is obtained from the short time scale event, based). Bejan [1], starting from the idea that the (forced or
that is, using the convective terms on the left-hand side of Natural) thinner thermal boundary layer rules the heat trans-

Eq. (55), fer mechanism from the wall to the fluid, states a boundary
layer thickness-based criterion. The ruling parameters ob-
(te)urc  H/(W)Ec tained with this criterion are the square roots of the ones

obtained with the here proposed time scale-based criterion,

(te)uNne  H/(v)NC _ . ;
the square roots appearing because Eq. (55) gives the dif-

<0(), o . fusion time (and thus also the convective time) scaling with
- (Wne Forced convection is dominant (56) 82 /a. Bejan [1] presents a discussion about the suitable pa-
(rc | >0, o ) rameters to characterize the heat transfer problem in mixed
Natural convection is dominant convection, with similar conclusions.

where Q1) meanf the order of unit

If Pr> 1, Eq. (40) states thatv)nc ~ (o/H)Ra)>
and, as we have see()rc ~ VooPr—13 when analyzing
the external forced convection thermal boundary layer for Another situation, physically very different from the fore-

7. Bénard convection

Pr>> 1, the criterion (56) leading to going ones, that can be easily analyzed with the proposed
time scale based methodology is the Bénard convection
T O, o _ problem. Whem T is lower than its critical value, the fluid
Prs 1: o Forced convection is dominant is quiescent and thermally stratified (Fig. 5(a)), the heat
Pey >0(D), o ) transfer from the bottom to the top wall occurring by pure
Natural convection is dominant diffusion through the fluid. IfAT reaches its critical value,
(57) the fluid starts to move in counterrotating two-dimensional
(almost square) rolls, as shown in Fig. 5(b), the heat transfer
If Pr<« 1, Eq. (42) states thab)nc ~ (oz/H)Bo}j{2 and, between walls occurring as a combination of diffusion and

as we have seefy)rc ~ Vo When analyzing the external convection: it is the onset of convection.
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invoking the geometric argument= H—2§. The Rayleigh
numberRay is defined as in Eg. (39), noting that is now
the global layer thickness of fluid andT is the temperature
diference between the lower and upper horizontal walls. As
<+ 7 a reasonableapproach, in a scale sense, we can consider
thatn = 4 (the temperature difference scales/®&/4 in
eachs layer, and asAT/2 in the interior A layer), and
AlLé thats/H ~ 1/4, thus obtaining that the onset of convection
occurs forRay ~ 128, an @100) value.
Thetrue critical value for this governing dimensionless
A parameter is well established as 1708, the here obtained
value being one order of magnitude lower, but considerably
7 7F greater than 1. This discrepancy is due mainly to the
(b) o geometric factors of order 1, that combined describes only
poorly the geometric characteristics of the rolls filling the
Fig. 5. Bénard convection: (a) Stagnant stratified fluid; (b) The onset of enclosed space [6], and to the pressure forces that were
convection, with (almost) square counterrotating rolls. not considered: the resulting flow is not a boundary layer
flow but a recirculating flow. However, the essential of
In the first situation, Fig. 5(a), heat is transferred by pure the involved phenomena has been retained and the correct
diffusion across all the layer heigltf. When the onset of  governing dimensional parameter has been obtained by the
convection occurs, for Br ~ 1 fluid, heat is transferred by  time scale based analysis proposed.
diffusion across the lower and upper layers of thickngss One can go one step further on the scale analysis of the
adjacent to the walls, and by convection in the remaining Bénard convection problem by noting that we are compar-
path fraction, A. Comparatively with the pure diffusion ing the diffusive and convective time scales without the con-
situation, the main difference at the onset of convection sideration of the effective areamsedfor the diffusive and

(@)

exists only at the interioA layer. convective transport phenomena. On the onset of convection,
Without convection, the diffusive time across thdayer due to the emerging flow structure, the convective heat trans-
scales as fer occurs across a fraction of the total width only. For a sin-
A2 gle roll we can assume, as a first approach, that the horizontal
(ta.T)a ~ — (60) length entering in the area used for convection heat transfer
o from the lower to the upper boundary is omy/4, instead
When the fluid motion begins, the convective time scale of the full A length used for the conduction heat transfer
across this sama layer is before the onset of convection. For a better comparison of
the time scales only one should take the same reference area
(Te)a ~ v (61) as used for convection and diffusion, because the essential

of the problem is the resulting heat flow. Taking the fall
length as reference, thé velocity scale for time scale com-
parison is obtained from’A ~ v(A/4) asv’ ~ v/4. With

The v velocity scale is evaluated from the momentum bal-
ance for a single half square roll, a way followed also by Be-

i 2
jan [6]. The buoyancy force scales ABA"/2)gf (AT /n), the consideration of these additional geometric features, in

where AT /n is the scale of the temperature difference the form of geometric parameters oD, one would obtain
between the rising fluid and the average temperature of 9 P X
that the critical Rayleigh number for the onset of convec-

the fluid within the layer. The buoyancy force is balanced tion is R 512 h bett It taki t th
by the shear force scaling ag(gvv/§)A /2], the term lon 1S Ray » @ much betler result taking present the

within the curved parenthesis being the scale for the vis- We\l/l\-ll_<trr1]owtnt\r/]alqetof37()t§. f th tric fact
cous shear stress. The convective velocity scales as ithout the Introduction ot the geometric factors, one

(1/2n)(sBAT H2/v)(A /H)(S/ H), and the convective time would obtain the criterion for the onset of convection stating
scale aiross tha layer becomes, that it occurs forRay ~ 1, a much poor numerical result.

In fact, when the convection onsets, the diffusion is not
gBATH “lrs\t occurring through thed height, as well as the convection
(Te)a ~2n H (62) is not occurring through this same distance. The introduced

Th t of i hen th ive ti geometric factors appear and acbasterapproaches for the
e onset of convection occurs when the convective time ..., ¢, rring phenomena.

scqle becomes shorter than the diffL_Jsive time scale, the cri- Once again, even for a non-boundary layer laminar
terion for the onset of convection beittg)a /(za.r)a ~ 1, situation, the time scale based approach proposed shows
thatis, to be a very effective and attractive tool for analysis and
F) (1 25)2}1 63) evaluation of the correct dimensionless parameters and

Ray ~ Zn[ I i transition’s criteria.
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8. Conclusions Also the Bénard convection problem is analyzed with
this time scale based approach, in the laminar regime, the
The time scale-based methodology proposed in the pres-criterion for the onset of convection being also found as a
ent paper proves to be a powerful and unifying tool for convection—diffusion time ratio. If it is true that numerical
momentum and thermal boundary layer analysis. The time values should be absent, in principle, in any scale analysis, it
scales for the different individual phenomena are easily ob- is also true that it is tempting to introduce soreasonable
tained, and the usual differential equations can be interpretedfactors in order to obtain better numerical results and
as algebraic relationships between different time scales forconclusions. This is the case of the preceding internal flow
convection, diffusion and source. Itis a method with its own and Bénard convection scale analysis.
physical insight, any situation being dominated by the short  The constructal theory proposed by Bejan [6] establishes
time scale events present. that an open system evolves in well defined ways, such that
The method is very effective when applied to the studied the access to the imposed (global) currents that flow through
situations, to obtain the momentum and thermal boundaryit is easiest. In the time scale based approach proposed,
layer thickness, for the definition of the adequate governing the system has the freedom to choose between diffusion or
dimensionless parameters, and for a unified, consistent anctonvection as the governing transfer mechanisms for heat
physically coherent interpretation of these parameters. Evenand momentum transfer, the easier mechanism being the one
the numerical values usually assumed by such parameterassociated with the short time scale. This is the most global
can be understood with this time scale basis. message of Eg. (8), which remains unchangeable if we are
The criterion of transition to turbulence is established thinking about a 3D problem.
through the Reynolds number, interpreted as a diffusion-  The time scale based analysis proposed is a methodology
convection time ratio, withR&ransition™ Tdiffusion/ Tconvection with its own physical insight, leading to very good results
~ 10° for very different physical situations. The unifying when applied to the analyzed situations. In the future, it
Reynolds number is obtained taking the external boundary needs to be used more and more in order to evaluate its
layer flow situation as reference, thus measuring the ratio relative merits and demerits by comparison with the classical
between the time needed for the wall information diffusion use of the scale analysis method, applied over the primitive
(normal to the wall) and the time needed for the convective differential equations.
transfer along the corresponding length, under the prevailing
velocity. Such results suggest that the fundamental mecha-
nism of transition is the same in apparently very different
physical situations, and that they are not so different if they References
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